GAS,LIQUID \& SoLID STATES

Liquid
1
$\because \because ?$
$\because 0$

Dr.P.S.Kandagal
HOD, Dept. of Chemistry S.V.M.Arts, Science and Commerce College Ilkal 9448339861 drpskilk@gmail.com

Syllabus (ObJEctives)

Gaseous state: Review of kinetic theory of gases, van der Waals equation of state, Boyle temperature. Molecular velocity: Maxwell's Boltzmann distribution law of molecular velocities (most probable, average and root mean square velocities). Relation between RMS, average and most probable velocity and average kinetic energies (derivation not required), law of equipartition of energy. Collision frequency, collision diameter, Collision cross-section, collision number and mean free path and coefficient of viscosity, calculation of σ and η, variation of viscosity with temperature and pressure. Critical phenomena: Andrews's isotherms of CO_{2}, critical constants and their determination Relation between critical constants and van der Waals equation (Derivation), continuity of states, law of corresponding states. Numerical problems are to be solved wherever applicable. (7 Lectures)

- Solids: Forms of solid, Unit cell and space lattice, anisotropy of crystals, size and shape of crystals, Laws of Crystallography: Law of constancy of interfacial angles, Law of rational indices, Law of symmetry (Symmetry elements), Crystal systems, Bravais lattice types and identification of lattice planes. Miller indices and its calculation, X-Ray diffraction by crystals: Bragg's law and derivation of Bragg's equation, Single crystal and powder diffraction methods. Defects in crystals, glasses and liquid crystals. Numerical problems.
- Nernst Distribution Law - Statement and its derivation. Distribution constant, factors affecting distribution constant, validity of Distribution Law, Modification of distribution law when molecules undergo a) Association b) Dissociation. Application of Distribution Law in Solvent extraction. Derivation for simple and multiple extraction. Principles of distribution law in Parkes Process of desilverisation of lead. Numerical Problems. (7 Lectures)

What is needed for Understanding Chemistry?

chemical $\begin{gathered}\text { atomserecules } \\ \text { substances }\end{gathered}$

Chemistry

IMAGINATION

CAN YOU IDENTIFY THE DIRECTION IN WHICH THIS BUS IS MOVING: LEFT OR RIGHT?

ROTE LEARNING

V/S

ACTIVE LEARNING

- Chemistry = Science of Matter

States of Matter

- Solid
- Liquid
- Gas

States of Matter

Solid
Holds Shape
Fixed Volume

Liquid
Shape of Container Free Surface Fixed Volume

Gas
Shape of Container
Volume of Container

MOLECULAR ARRANGEMENT

Molecules in solids

Molecules in liquids

Molecules in gases

Gas is Compressible: SYRINGE EXPT

- Boyle’s law

Charles's law

Particle Motion in Solids, Liquids and Gases

Test

What happens when water boils?

What Happens When Water Boils?

	True	False	Not sure
1.The bubbles contain a mixture of hydrogen and oxygen.		False	
2. The bubbles contain carbon dioxide.		False	
3.The bubbles contain steam (water vapour).	True		
4.The bubbles are empty (vacuum).	False		
5. The bubbles contain air.		False	
6. The bubbles contain oxygen only.		False	

MOLECULAR ARRANGEMENT

Molecules in solids

Molecules in liquids

Molecules in gases

Boyle's Law
 Charle's Law

- Avogadro's law

Grahams law of diffusion etc.,

1.BOyLE'S LAW

2 Charle's Law

V a T
$\mathrm{V} / \mathrm{T}=$ Constant at constant P

3. Graham's Law of Diffusion

$$
\frac{R_{1}}{R_{2}}=\sqrt{\frac{M_{2}}{M_{1}}}
$$

Boyle (1662) p.V $=f(M, T)$

Gay-Lussac (1809) $p / T=h(M, V)$

Charles (1787) V/T $=g(M, p)$

Avogadro $(1811) n / V=k(p, T)$

BEHAVIOUR OF GAS AT Molecular level

o Kinetic theory of Gases

Notes

Effect of Pressure on
 Volume of a Gas-Expt Boyle's Law

$P \propto \frac{1}{V}$

$P=$ pressure
 $\boldsymbol{v}=$ volume

(assumes temperature constant and closed system)

Ideal Gas Isotherms $\mathrm{P}=\mathrm{nRT} / \mathrm{V}$ (hyperbolae)

Real Gas Isotherm

For an ideal gas $\mathrm{PV}=\mathrm{nRT}$, At constant temperature, $\mathrm{PV}=$ Constant A curve in a P-V diagram generated by the equation $\mathrm{PV}=$ Const. at constant temperature is called an isotherm.

Andrew's Experiment on Carbon dioxide

Water-How It Changes State

melting

evaporating

HEATING

COOLING

freezing
condensing

Liquefaction of CO_{2-}

\& its Critical temperature

1.Andrew's Isotherms of Carbon dioxide

$\mathrm{Tc}=31.1^{\circ} \mathrm{C}$
$\mathrm{Pc}=72.9 \mathrm{~atm}$

Discussion

Andrew's Isotherms of Carbon

- 1
1.Isotherms above $31.1 .{ }^{0} \mathrm{C}$
2.Isotherms below $31.1 .{ }^{0} \mathrm{C}$
3.Isotherm at 31.1. ${ }^{0} \mathrm{C}$

Critical Constants

1.The Critical Temperature (T_{c})
"The temperature below which the continuous increase of pressure on a gas ultimately brings about liquefaction and above which no liquefaction can take place no matter what so ever pressure be applied".
Ex: Critical tempe

2.Critical Pressure (P_{c})

 The pressure required to liquefy the gas at critical temperature is called critical pressureEx: P_{c} of $\mathrm{CO}_{2}=72.9 \mathrm{~atm}$

3.Critical Volume (V_{c}) The volume occupied by 1 mole of gas under these conditions is called the critical volume.
Ex: V_{c} of $\mathrm{CO}_{2}=94 \mathrm{~mL} / \mathrm{mole}$

Table: The critical constants of some common gases

cm	Caticilminitis (Criloul prain(th)	Cillat rothmimmen
ENTM	5.3	2.26	57.8
Alcom	33.2	12.8	65.0
Wherm	126.0	33.5	90.1
Oriom	154.3	50.1	74.4
Critondert	304.0	72.9	94.0
Aminer	405.5	111.5	72.1
Crlothe	407.1	76.1	123.8

Selective Attention Test

2.Relationship between Critical Constants and

Van der Waal's Constants

Van der Waals equation may be written as:

$$
\begin{align*}
& \left(P+\frac{a}{V^{2}}\right)(V-b)=R T \tag{i}\\
& \text { or } \\
& \text { or } \quad P V+\frac{a}{V}-p b-\frac{a b}{V^{2}}=R T \\
& \text { or } \\
& \text { or (i) } \\
& V^{3}+\left(\frac{\mathrm{aV}-P b V^{2}-a b-R T V^{2}=0}{P}+b\right) V^{2}+\frac{\mathrm{aV}}{P}-\frac{a b}{P}=0
\end{align*}
$$

At Critical Temperature and Critical Pressure $V=V_{c}$
Or $\quad \mathrm{V}-\mathrm{V}_{\mathrm{c}}=0$
Or $\left(V-V_{c}\right)^{3}=0$
Or $\mathrm{V}^{3}-3 \mathrm{~V}^{2} \mathrm{~V}_{\mathrm{C}}+3 \mathrm{VV}_{\mathrm{c}}{ }^{2}-\mathrm{V}_{\mathrm{c}}{ }^{3}=0$

This is called an equation of critical state. Substituting $\mathrm{T}=\mathrm{T}_{\mathrm{c}}$ (critical temperature) and $\mathrm{P}=\mathrm{P}_{\mathrm{c}}$ (critical pressure) in equation (ii), we get,
$V^{3}-V^{2}\left(\frac{R T_{c}}{P_{c}}+b\right)+V \frac{a}{P_{c}}-\frac{a b}{P_{c}}=0$

Comparing eqns. (iii) and (iv) we get

$$
\begin{gather*}
3 V_{c}=\frac{R T_{c}}{P_{c}}+b \tag{v}\\
3 V_{c}^{2}=\frac{a}{P_{c}} \\
V^{3} c=\frac{a b}{P_{c}}
\end{gather*}
$$

On solving the above equations, we get

$$
\begin{aligned}
V_{c} & =3 b \cdots \cdot \ldots \ldots \ldots(\text { viii }) \\
P_{c} & =\frac{a}{27 b^{2}} \cdot \ldots \ldots \ldots .(\mathrm{ix}) \\
T_{c} & =\frac{8 a}{27 b R} \cdots \cdot \ldots \ldots .(\mathrm{x})
\end{aligned}
$$

Review-
 Derive Expression for Critical Constants in terms of Van der Waal's constants

TABLE

van der Waals Constants of Several Gases

Name	Formula	$\boldsymbol{a}\left(\right.$ atm $\left.{ }^{2} \mathrm{~mol}^{-2}\right)$	$\boldsymbol{b}\left(\mathrm{L} \mathrm{mol}^{-1}\right)$
Ammonia	NH_{3}	4.170	0.03707
Argon	Ar	1.345	0.03219
Carbon dioxide	CO_{2}	3.592	0.04267
Hydrogen	H_{2}	0.2444	0.02661
Hydrogen chloride	HCl	3.667	0.04081
Methane	CH_{4}	2.253	0.04278
Nitrogen	N_{2}	1.390	0.03913
Nitrogen dioxide	NO_{2}	5.284	0.04424
Oxygen	O_{2}	1.360	0.03183
Sulfur dioxide	SO_{2}	6.714	0.05636
Water	$\mathrm{H}_{2} \mathrm{O}$	5.464	0.03049

3.DETERMINATION OF CRITICAL CONSTANTS

Video

1. Direct method of Andrews: A series of isothermal curves drawn at various temperature and the critical temperature, critical pressure and eritical volume are determined.
2. By using the following method.

10. 18 DETERRMINATYON OF CRITYCAK TEMPRRATUURE (T_{0}) AND CRITICAL PRESSURE (P_{d})

By using cagniard de la Tours apparatus
The method is based on the principle that, by noting the temperature when the surface of separation between liquid and vapour in a closed space disappears on graclual heating. also the temperature when the surface reappears on cooling.

In other words, the method is based on the principle that at the critical temperature the surface of separation (i.e., the mieniscus) between the liquid and vapour phases disappears.

The apparatus is consists of U-type strong glassed tube Wth a big bulb on one end. This bulb is enclosed in a steam jacket. The tube is filled with mercury leads some gap of air. A foale is fixed to measure the pressure, 1.e., it acts as manometer.

The liquid under examination is taken in bulb. It is heated by passing steam. The liquid vapoursis at the temperature T, ie., the meniscus disappears. This temperature T_{1}, and the
pressure P, are recorded. Then the passing of steam in to the heating jacket is stopped. The bulb is then allowed to cool. The vapour condenses to form liquid. At the temperature T_{2} the meniscus reappears. This temperature T_{2} and pressure P_{2} are recorded. The mean temperature of disappearance and appearance gives the eritical temperature.

$$
\therefore T_{C}=\frac{T_{1}+T_{2}}{2}
$$

The mean of the pressures read i.e.. P_{1} \& P_{2} from the manometer, corresponding to two temperatures gives the critical pressure.

$$
\therefore P_{C}=\frac{P_{1}+P_{2}}{2}
$$

10.19 DETERMINATHON OF CRITYCAK, VOLUME (VN_{c})

It is difficulty to measure the critical volume accurately. because even a slight change in temperature and pressure near the critical point produces a large change in volume. The most aceurate method of cletermining critical volume is the Amagat's hiwitiod of mean densities.

Amagat's method consists of measuring the densities of a liquid and its vapour at different temperature near the critical temperature. A graph of these two densities plotted against the temperature. We get the curve AB for vapour \& BC for liquid as shown in figure.

The two curves $\mathrm{AB} \& \mathrm{BC}$ are merge at a point i.e., at critical mith because here the density of the liquid and vapour becomes matical.

The mean values of the densities are then plotted against the Mous temperatures, we get a straight line BD, pass through the Tilmal point. It intersects the curve ABC at B , the corresponding Wity at the point B is the critical density. Critical density of a If molecular mass of the liquid M is known, then critical Wheme $\left(V_{\mathrm{c}}\right)$ is calculated using the equation.

$$
\therefore \mathrm{D}_{\mathrm{C}}=\frac{\mathrm{M}}{\mathrm{~V}_{\mathrm{C}}} \text { or } \mathrm{V}_{\mathrm{C}}=\frac{\mathrm{M}}{\mathrm{D}_{\mathrm{C}}}
$$

4.REDUCED EQUATION OF STATE AND LAW OF

 CORRESPONDING STATESVan der Waals' equation of state contains a, b and R, the first two of which are the characteristic constants of a gas and the third one is universal gas constant. The presence of a and b makes the nature of the isothermals different for different gases hence, the equation of state is not universal. The attempt of building up an equation of state which is of universal use succeeded in developing reduced equation of state. . Let us define three reduced quantities:

Reduced Pressure $=\mathrm{P} / \mathrm{P}_{\mathrm{c}}=\pi(\mathrm{Pi})$
Reduced Volume $=\mathrm{V} / \mathrm{V}_{\mathrm{c}}=\phi \quad($ Phi)
Reduced Temperature $=\mathrm{T} / \mathrm{T}_{\mathrm{c}}=\theta$ (Theta)

$$
\left(P+\frac{a}{V^{2}}\right)(V-b)=R T
$$

Now replace the $P V$ and T by $\pi P_{c} \phi V_{c}$ and θT_{c} respectively in van der Waal's equation.

$$
\left(\pi P_{c}+\frac{\mathbf{a}}{\left(\varphi V_{c}\right)^{2}}\right)\left(\varphi V_{c}-b\right)=R \Theta T_{c}
$$

We know.

$$
V_{c}=3 b, \quad P_{c}=\frac{a}{27 b^{2}} \text { and } T_{c}=\frac{8 a}{27 R b}
$$

Substituting the values $V_{C} . P_{C}$ and T_{C} in the above equation, we have.

$$
\begin{aligned}
& \left(\pi \frac{a}{27 b^{2}}+\frac{a}{(\varphi 3 b)^{2}}\right)(\varphi 3 b-b)=R \Theta \frac{8 a}{27 R b} \\
& \left(\frac{a}{27 b^{2}} \pi+\frac{a}{\varphi^{2} 9 b^{2}}\right)(\varphi 3 b-b)=\frac{8 a \theta}{27 b} \\
& \frac{a}{9 b^{3}}\left(\frac{\pi}{3}+\frac{1}{\varphi^{2}}\right)(\varphi 3-1) b=\frac{8 a \theta}{27 b} \\
& \frac{a}{9 b}\left(\frac{\pi}{3}+\frac{1}{\varphi^{2}}\right)(\varphi 3-1)=\frac{8 a \theta}{27 b} \\
& \left(\frac{\pi}{3}+\frac{1}{\varphi^{2}}\right)(\varphi 3-1)=\frac{8 a \theta}{27 b} \times \frac{9 b}{a} \\
& \left(\frac{\pi}{3}+\frac{1}{\varphi^{2}}\right)(\varphi 3-1)=\frac{8 \Theta}{3} \\
& 3\left(\frac{\pi}{3}+\frac{1}{\varphi^{2}}\right)(\varphi 3-1)=8 \theta \\
& \left(\pi+\frac{3}{\varphi^{2}}\right)(\varphi 3-1)=8 \Theta
\end{aligned}
$$

This equation is called van der Waal's reciuced equation of state. This equation involves neither R nor the van der Waal's

Law of Corresponding States

DEFINITION:

When two substances have the same REDUCED TEMPERATURE AND REDUCED PRESSURE, THEY WILL HAVE THE SAME REDUCED VOLUME.

5.Liquefaction of Gases

Applications of Liquid $\mathrm{H}_{2} \& \mathrm{O}_{2}$

Cryogenic Technology

Making

 Liquid Air by Cooling

 Liquid Air by Cooling
 (Using liquid Nitrogen)

Boling Point of $\mathrm{N}_{2}=77.4 \mathrm{~K}$
Boling Point of $\mathrm{O}_{2}=90.2 \mathrm{~K}$

Carl Paul Gottfried Linde (11 June 1842 - 16 November 1934) was a German scientist, engineer, and businessman. He discovered a refrigeration cycle and invented the first industrial-scale air separation and gas

liquefaction processes

LINDE'S METHOD - 1895

a. Air is compressed to 200 atm.
b. Most of the water in air is condensed and removed.
c. The heat generated as a result of compression is removed by passing the gas through coils C.
d. The dry gas is then passed through a copper spiral coil E.
e. It is then expanded to almost 1 atm through a controlled valve J.
f. When the air comes out of the valve, expansion takes place from 200 atm to 1 atm . In this way fall of temperature occurs. This cold air goes up and cools the incoming compressed air.
g. The cycle is repeated several times.
h. The temperature of the expanding gas finally drops and the remaining air is liquefied.
I. The liquid air is collected in chamber F and can be drawn off.

6. Maxwell Molecular Speed Distribution

What do you mean by Kinetic energy of molecules?
Boltzmann's Theory(upto 3.10)

Maxwell Molecular Speed Distribution

Maxwell Molecular Speed Distribution Curves

affonlal
Maxwell-Boltzmann distribution of velocities

Most Probable Velocity

Most Probable velocity corresponds to the maximum of the Maxwell's function

The relationship among velocities are :

$$
\begin{aligned}
\mathrm{C}_{m p}: \mathrm{C}_{a v}: \mathrm{C}_{r m s} & =\sqrt{\frac{2 \mathrm{RT}}{\mathrm{M}}}: \sqrt{\frac{8 \mathrm{RT}}{\pi \mathrm{M}}}: \sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}} \\
& =\sqrt{2}: \sqrt{\frac{8}{\pi}}: \sqrt{3} \\
& =1.414: 1.596: 1.732 \\
\mathrm{C}_{m p}: \mathrm{C}_{a v}: \mathrm{C}_{r m s} & =1: 1 \cdot 128: 1 \cdot 224
\end{aligned}
$$

Maxwell-Boltzmann distribution

higher T
higher speeds are more probable

$$
f(v)=4 \pi\left(\frac{m}{2 \pi k T}\right)^{3 / 2} v^{2} v^{2} e^{-m v^{2} /(2 k T)} \begin{aligned}
& \text { Maxwell-Boltzmann } \\
& \text { distribution }
\end{aligned}
$$

Maxwell's Distribution

The number of molecules moving with velocity between v and $v+d v$ is:

$$
f(v)=N\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \exp \left[-\frac{m v^{2}}{2 k T}\right]
$$

where,
m is the mass of a molecule. N is the total number of molecules.
k is the Boltzmann constant. T is the absolute temperature

EfFECT OF TEMPERATURE ON DISTRIBUTION OF MOLECULAR VELOCITIES (EX: Nitrogen gas)

We solve problems

\leftarrow Problems

Solutions \rightarrow

Previous Year

Question Papers

Thank

